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Abstract—The design and implementation of an integrated
wearable face recognition and training system for prosopagnosia
patients are presented. The purpose of this assistive technology
is to provide real-time memory assistance and long-term rehabil-
itation. The real-time face recognition mode provides audio and
visual notification of people who interact with the subject, while
the at-home training mode combines features of mnemonic and
perceptual training to help with prosopagnosia rehabilitation. In
addition, a custom eye tracker is developed to determine the
person whom the subject is making eye contact with within a
crowd. Using the inverted face effect to mimic the difficulties
of prosopagnosia patients, clinically healthy participants have
shown improvements in their face-naming abilities. Early re-
sults indicate the system’s potential to enrich the well-being of
prosopagnosia patients.

Index Terms—Assistive technology, wearable technology,
human-computer interaction, visual memory prosthetic,
prosopagnosia.

I. BACKGROUND AND INTRODUCTION

Recognizing familiar faces of acquaintances, families, and
friends, even one’s partner is an essential and critical ability in
social interactions. Lacking such ability, known as a disorder
called prosopagnosia can cause severe limitations in people’s
social life.

Prosopagnosia is a cognitive disorder characterized by defi-
ciencies in recognizing the faces of familiar people. It affects
as many as 2% of the population [1]. There are two types
of prosopagnosia, acquired and developmental. Although few
studies have investigated prosopagnosia rehabilitation, con-
vincing evidence exists to show that rehabilitation is effective
for developmental prosopagnosia patients [2].

Common rehabilitation approaches focus on the enhance-
ment of mnemonic and perceptual abilities. Some training
programs are designed to emphasize the perception of facial
features [3]. An effective technique is ”feature naming” which
has shown remarkable improvements in patients’ ability to
recognize familiar faces [3]–[6]. Results from larger-scale
studies have confirmed that the effects of perceptual training
can be generalized for a large population of developmental
prosopagnosics [4], [7].

Due to their inabilities, prosopagnosics’ face social diffi-
culties include limited social involvements and employment
opportunities [8]. Consequently, these challenges lead them
to anxiety and depression and severely impact their mental
well-being [9], [10]. Therefore, we propose that an assistive
and rehabilitation system is essential to improve their social
interaction and mental health.

Fig. 1: The wearable glass design for prosopagnosia worn by a subject.

Early researches proposed wearable devices as a “personal
visual assistant” and “visual memory prosthetic” for the
visually-impaired to improve their social activities [11]–[14].
An existing portable vision commercial device is MyEye 2.0,
produced by OrCam [13]. This product allows a visually
impaired user to identify objects and recognize faces in front
of them through hand gestures and audio notifications. Another
study proposed a face recognition smartphone application with
a wearable camera by the chest to record and report contextual
information from previous interactions [15]. The majority of
visual assistive systems are designed for general visually-
impaired people, i.e. low vision or blind individuals. Besides,
the face recognition system proposed for prosopagnosia and
Alzheimer’s Disease [16] does not include the capability of
rehabilitation for developmental prosopagnosics [17].

This paper proposes the first wearable system that can act
both as a real-time memory assistant and a long-term at-home
self-training tool. The architecture of the proposed system is
inspired by “WearCamTM” [11]: a face image of the human
subject is taken through a wearable camera, and these images
are used during face-naming training for the user.

As proof of concept, preliminary experiments were per-
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Fig. 2: Fractal nature of human-computer communication. The human brain
and body interact in a feedback loop of efferent and afferent nerves. In a
HUMACHINE (human-machine symbiosis), the human and machine interact,
e.g. through senses (human) and sensors (machine). A city is a machine
of sorts. Multiple HUMACHINES interact in a smart city that itself has
sensors conducting surveillance. Thus sousveillance is a necessary element
to a continuation of this symmetrical feedback loop. Equiveillance (equality
between surveillance and sousveillance) is essential to the proper functioning
of a smart society, e.g. a smart city.

formed on clinically healthy participants. To mimic prosopag-
nosia’s deficits in facial perception, we used inverted face
images for the experiment. According to a face inversion
effect, clinical healthy individuals require a longer time and
more cognitive effort during the processing of upside-down
faces [18]–[21]. Neuroimaging revealed that recognizing in-
verted faces activates both face-selective and object recogni-
tion regions [22]. One hypothesis is that an inverted face is
processed as facial features rather than a holistic face [23].
This effect is similar to prosopagnosics’ disrupted structural
encoding, holistic processing and configural processing abili-
ties [3], [7], [24], [25]. Therefore, the challenge for clinically
healthy participants in processing inverted faces is analogous
to prosopagnosics in processing regular faces.

II. PRIVEILLANCE

Before proceeding forward with the technical details of our
implementation, we consider the broader intellectual landscape
in which our work exists.

A. Fractal nature of humachine communication

The human body may be regarded as a machine of sorts.
The mind and body together form a feedback loop. Efferent
nerves carry signals from the brain to the body. Afferent nerves
carry signals from the body to the brain.

Humans and machines can interact in a similar symbiotic
way. When we use a technology constantly, it becomes very
much a part of us, i.e. something we don’t think as being
separate from us.

Wearables, implantables, and other technologies that “be-
come part of us” form the basis for “bionic” or “cyborg” or
other forms of “humachine”. The humachine is created by an
almost inseparable feedback loop between human and machine
that is analogous to the feedback loop between the mind and
body. Thus there is a kind of self-similar (fractal) nature of
this symbiosis as illustrated in Fig. 2.

Multiple such humachines interact similarly in an enviro-
ment having many sensors. In smart cities we’re often under
surveillance, and it makes sense for us to sense, i.e. it makes
sense for humans to sense, as well as buildings and cars and
other entities sense. Thus human-sensors (sousveillance) are
as important (or more important) than a building’s sensors.
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Fig. 3: Whereas surveillance (oversight) is a well-known area of research and
practice, wearables give rise to the new phenomenon called “sousveillance”
(“undersight”). Surveillance and sousveillance intersect to define “Veillance”.
For example, a person wearing a camera might also be under surveillance
from cameras installed on or in a building. Each of these two “veillances”
interact with the concept of privacy. The interplay between privacy and
surveillance is known as security, wheareas the interplay between privacy and
sousveillance gives rise to a relatively new concept called “suicurity” (self-
care) [26]. PriveillanceTMuses VidescrowTMtechnology to achieve an optimum
in the competing space of surveillance, sousveillance, preservation of personal
privacy (of the wearer and others) and a fundamental human need to see and
understand the world around us.

Sousveillance is thus as necessary, or even more necessary
than surveillance.

We cannot legally deny a person the right to use a seeing
aid or a memory aid, and thus sousveillance cannot legally be
banned or prohibited.

Importantly therefore, we must design a system that pro-
vides privacy in the face of veillance. We have created an
“Equiveillance Working Group” and related series of projects
funded/commissioned by the McLuhan Centre for Culture
and Technology. The aim of this group is to understand the
interplay between privacy, surveillance, and sousveillance – a
project that our lab has been working on for many years. See
Fig. 3.

III. WEARABLE ASSISTIVE TECHONOLOGY FOR
PROSOPAGNOSIA

The goal of our design is to provide a wearable assistive
and training solution for prosopagnosia that acts as a ”visual-
memory prosthetic” [11]. The system is an Android application
that has two modes (an assistive mode and a training mode)
with an optional wearable hardware set.

A. Wearable Eyeset

The wearable hardware eyeset streams video input for the
real-time recognition mode. The application supports Android
phone’s built-in camera, external USB webcams and a custom
eyeset, as illustrated in Fig. 5.

The wearable eyeset consists of three cameras, eight infrared
LEDs, and three compute boards. The first camera on top of
the eyeset is an environment-facing PI V1 camera that streams
video from the user’s point of view with 5 megapixels still
resolution. Every frame of the video stream at the rate of
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Fig. 4: A data flow diagram showing two modes of operations and a three-part
system.
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Fig. 5: The wearable Glass Design for Prosopagnosia.

24 frames per second that contain faces are then captured
as the subject interacts with other people. The other two
infrared PI cameras placed below the eyeset with infrared
LEDs positioned around the eyeglasses frame are used for
tracking the eyes’ visual focus so that only the person that the
user is looking at gets detected in a crowd.

To facilitate the real-time mode during the user’s interaction
with multiple human subjects, an eye tracker for detecting
pupil positions was implemented using the other two infrared
cameras placed below the eyeset and hence the user’s pupil
positions are used for tracking the eyes visual focus. The
infrared LEDs that are positioned around the eyeglasses frame
shine light on the eye and the pupil for eye tracking. The
system targets a specific face from the environment based on
the wearer’s pupil position. The eye-tracker uses a custom
blob detection algorithm for pupil detection. To identify the
pupil, the system, first, masks the video frame at various
brightness threshold values. For each threshold value, all pixels
of higher brightness will be rendered to the color white, at
255, whereas other pixels are rendered to the color black, at

0. Secondly, each round of masking produces various contours
that are filtered by area and circularity. Each round of threshold
masking contributes to a “vote” on multiple contours that
qualify for the criteria of a pupil. In the end, the contour
that amasses the most “votes” from all threshold masking is
detected as the pupil. The coordinate of the pupil is compared
with the coordinate of ”the front direction” calibrated at the
beginning phase. Gazing directions are sent via a socket to the
real-time facial recognition system.

B. Real-time Face Recognition Mode

In real-time recognition mode, videos are streamed through
an environment-facing camera from the perspective of the
user. The camera captures the face of the person that the
user is interacting with. Fig. 6a is another implementation
of Fig. 5 on a sunglasses without eye-tracking cameras. The
face recognition module detects faces present in each frame
and generates unique face encodings. The face encoding is
compared with a list of encodings generated for the contacts
during the model training procedure. If a match is found, the
system provides an audio and a visual output of the predicted
human subject’s name and the accuracy rate. A sample of the
visual output is shown in Fig. 6b. If no matching contact is
found, the face recognition module will fire up the new contact
handling logic, as illustrated in Fig. 6c. The state-of-art face
detection model BlazeNet [27] and the face encoding mode
FaceNet [28] are used to perform the above functionalities.

(a) (b) (c)

Fig. 6: The user interface of the Android application operating in real-time
recognition mode. a) shows a USB webcam assembled on a sunglasses. b)
shows the real-time face recognition mode’s main interface during run time.
c) shows the interface for adding a new contact into the system.

Besides a recognition model for the contacts, the system
has a second model to handle the unknown faces, which
ensures that no duplicate unknown faces will be recorded in
the system. If the contact model detects an unknown face
during run-time, the system will compare this face encoding
with all the unknown records before saving the first image
frame of the unknown face. The second recognition model will
be trained to learn the new unknown face during run-time.



Having a record to keep track of unknown faces promotes
seamless and uninterrupted social interaction for the user. This
allows users to add new people that they have just met as a
contact after greeting and conversation with the image that the
system has taken. A button is available in the interface of the
recognition mode for the user to click on to add contacts as
shown in Fig. 6c. The user needs to select at least one face
image from any album for the contact model to be trained on.
It is highly recommended for the user to select five face images
as it increases the prediction accuracy of the model [29].

The face profile management module displays a list of
contacts in the application. Once the user clicks into a dis-
played name, a face image with annotation(s) is shown on
the screen if available. Then the user can rename or edit
the annotations. This feature allows the user to record facial
features description for each contact, which can improve the
face-naming ability through the process of feature-naming,
recall, and memorization [4], [30].

C. The At-Home Self-Training Mode

The at-home self-training mode is an interactive interface
for users to learn and self test the face-naming association
using face images of the contacts selected during the real-
time face recognition mode. It is a standalone mode, which
the user can use either before or after the real-time mode.
The training design is inspired from a common methodology
used in prosopagnosia rehabilitation studies [3]–[6], [30].
The training process also involves a feature-naming step.
This additional task helps the user to focus on the face’s
internal features and improves the user’s structural encoding
ability. Previous studies have shown promising evidence for
improvement following the feature-naming task [3]–[6].

(a) (b) (c)

Fig. 7: The user interface of the Android application operating in self-training
mode. Fig. 7a shows a set of face images in a training round for training mode.
Fig. 7b shows a pop-up of a correct reference image when an incorrect choice
is made during training mode. Fig. 7c shows the training Mode on Android
App with the inverted face effect for the experiment.

One training session consists of fifteen rounds and for each
training round a set of ten face images from the contact list
shows up on the screen, as illustrated in Fig. 7a. In the training

session, the user is asked to identify the face that corresponds
to the name displayed at the top of the screen. When a wrong
face is selected, the correct face is displayed on the screen
until the user taps the screen to enter into the next round, as
shown in Fig. 7b. The user should name three face features of
the correct face before proceeding forward. When the correct
face is selected, the next round is displayed right afterwards.
The app tracks the accuracy of the user and the length of the
training session.

IV. EXPERIMENTAL PROCEDURES

A. Real-Time Face Recognition With Eye Tracker

As the accuracy of the pre-trained recognition models is
known, the performance of the eye tracker was tested in
real-time recognition mode. A series of experiments were
performed, in which social distance and face angle were
controlled. The subjects were ten undergraduate students: five
males and five females. The contact list was populated with 4
pictures of each subject, including one picture of their front
face with no facial expression, one picture of the subject
smiling, two pictures taken from 30◦ to the left, and to the right
respectively. The pictures were taken in the same environment
with the same camera resolution.

To test the performance of the eye tracker specifically, 2
subjects were standing side by side at a fixed distance to the
perceiver wearing the eye tracker, as demonstrated in Fig. 8.

For the first task, the subjects stood 2m away from the
perceiver and showed their front face to the perceiver. For
the second task, the two subjects stood 2m away from the
perceiver, but each subject faced 30◦ to a different side
showing their side face. For the third task, the subjects stood
0.5m away from the perceiver and showed their front face.

During each task, the perceiver kept his head still and
moved his eyes looking at each subject alternately for 10 trials.
The face recognition was expected to only detect the person
being stared at. The accuracy rate(the percentage of correct
recognition) and mismatch rate(the percentage that the wrong
subject not being stared at were recognized) were recorded.
3× 10 trials were performed by each pair of subjects. A total
of 150 trials were performed on 5 pairs of subjects.

B. At-Home Self-Training Mode

As for the experiment of the training mode, the participants
were ten clinically healthy people. To mimic the training
process of prosopagnosia patients, we displayed upside-down
photos during the training process, as illustrated in Fig. 7c.
Note that for the purpose of our experiment, we explicitly
replaced the real-time captured face images in the database
with celebrities’ faces. The reason that celebrity images are
used as the training images is that we want to mimic the
effect of prosopagnosia patients where they know the subject
as a person but have difficulty in processing the entire face.
Thus, celebrity faces are the optimal option as a control to
ensure that most participants know the training faces. A total
of 20 images were selected from Labeled Faces in the Wild
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Fig. 8: The participant position set up during the experiment for real-time
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Fig. 9: The experiment floor set up, where δy represents the social distance
and δx represents the maximum distance apart

(LFW) face database. All images are face of celebrities, and
we carefully mixed races to avoid a cross-race effect [31].

The participants were divided into one experimental group
and one control group, where each group had five participants.
Each participant performed five blocks of ten trials of the
training using the interactive interface as described in section
III-C. For the experimental group, the participants were asked
to name facial features of the celebrities’ face when their
selection was wrong. The participant had five seconds to list
three facial features of the correct image. For the control

group, the participants did not perform the feature-naming task
where they learn the correct face for five seconds on their
own. The hypothesis is that face-feature naming allows the
participants to acquire a better holistic understanding of the
training face image.

V. RESULTS AND DISCUSSION

A. Results from the Facial Recognition Experiment

TABLE I: Table of Accuracy for Facial recognition

Accuracy [%]
Conditions Front 0.5m Front 2m Side 2m

Subject Pair 1 100.0 80.0 70.0
Subject Pair 2 100.0 80.0 90.0
Subject Pair 3 90.0 80.0 90.0
Subject Pair 4 100.0 90.0 70.0
Subject Pair 5 90.0 90.0 70.0

Average 96.0 84.0 78.0

Table I presents the accuracy of facial recognition tasks in
different conditions. Detection and recognition of a correct
subject count as a success, while a mismatch or failure to rec-
ognize the subject count as a failure. A generic finding is that a
closer distance of the subject’s face leads to better recognition
accuracy. According to the experiment results, the accuracy
of the real-time face recognition system is considerably high
because it is a probabilistic product of the accuracy for the
eye tracker and the face recognition system.

During the preparation of the experiment, we discovered
that the real-time recognition system has a range of effective
distance and angles. With respect to the environment-facing
camera’s field of view, the user’s maximum head movement
angle towards the human subject’s position is 22.60◦ for an
average social distance [32] [33] of 0.5m apart and 46.05◦

for camera’s maximum depth of 2m. The calculation for the
experiment distance setup is shown in Fig. 9.

B. Results From the Training Experiment

TABLE II: Training experiment accuracy for each trial

Trial No. (Accuracy [%])
Experiment Group 1 2 3 4 5

Experimental 1 73.3 100 100 100 100
Experimental 2 73.3 80.0 80.0 100 100
Experimental 3 80.0 73.3 80.0 80.0 86.7
Experimental 4 80.0 80.0 80.0 100 100
Experimental 5 73.3 73.3 93.3 100 100

Experimental Average 76.0 81.3 86.7 96.0 97.3

Control 1 66.7 73.3 73.3 73.3 86.7
Control 2 66.7 80.0 93.3 100 86.7
Control 3 73.3 86.7 93.3 93.3 100
Control 4 40.0 53.3 53.3 80.0 86.7
Control 5 80.0 80.0 73.3 100 80.0

Control Average 65.3 74.7 77.3 89.3 88.0

The primary outcome variables are reaction time and accu-
racy, which were recorded for each block of the face recog-
nition task. There were five blocks of training and assessment
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Fig. 10: A graph of the average accuracy of each trial. Each subject’s accuracy
data is presented in Table II.

for each participant. Table II and Table III shows participants’
accuracy and reaction time in each block of trials.

TABLE III: Training experiment reaction time for each trial

Block Trial No. (Reaction Time [s])
Experiment Group 1 2 3 4 5

Experimental 1 84.6 66.1 54.5 46.8 61.1
Experimental 2 119.0 79.5 57.9 67.6 37.2
Experimental 3 67.2 42.8 57.0 62.7 46.0
Experimental 4 109.0 46.0 65.1 47.6 67.1
Experimental 5 119.9 96.8 107.3 96.0 60.9

Experimental Average 99.9 66.2 68.4 64.1 54.5

Control 1 99.2 102.2 80.3 79.0 65.8
Control 2 75.3 87.7 59.2 67.7 39.7
Control 3 87.0 54.9 65.0 60.0 48.0
Control 4 149.0 86.6 135.6 101.9 83.3
Control 5 86.0 71.6 85.3 50.4 40.6

Control Average 99.3 80.6 85.1 71.8 55.5
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Fig. 11: A graph of the average reaction time of each trial. Each subject’s
accuracy data is presented in Table III

1) General Improvement: Fig. 10 and Fig. 11 shows the
average accuracy and reaction time in each trial. It can be

seen from our results that there was a general improvement in
accuracy and reaction time for both the experimental and the
control group along with training in later blocks as expected.
These results indicate that face recognition ability can be
improved on an inverted face. This is in accordance with the
results from previous studies that human facial recognition
ability is plastic, therefore, it is possible to improve facial
recognition ability through proper training.

2) Experimental Group vs. Control Group: The results also
indicate the experimental group performs better on average
than the control group both in terms of accuracy and reaction
time. From the participants’ self-reported surveys, participants
from the experimental group said they focused more on the
facial features of face images during the training procedure.
This help to explain why the experiment group had a better
performance. However, since the sample size is small, the
improvement could be caused by the fact that the participants
from the experimental group have better facial recognition
ability. Therefore, the conclusion that the feature-naming pro-
cedure helps rehabilitation still lacks a strong evidence.

3) Improvement Rate: Before the experiment, We expected
a faster increasing rate in performance from the experimental
group, to indicate that the feature-naming procedure is ef-
fective in improving facial memory and recognition ability.
However, this is not shown in our results. By fitting a line
into the data, it is shown that the two groups improved at
approximately the same rate.

VI. CONCLUSION

The paper presents an integrated solution consisting of a
real-time facial recognition system and an at-home training
system. The results from the experiments not only showed
the real-time face recognition mode has a relatively high
accuracy rate especially when the subject showed their front
faces to the perceiver at a closer distance, but also confirmed
the hypothesis that training can be used to improve facial
recognition performance.

VII. FUTURE WORK

A. Trials With Prosopagnosia Patient

Since the preliminary experiment was done on clinically
healthy participants. The assumption of our methods is built
upon the face inversion effect to mimic the difficulty in
recognizing faces for prosopagnosia patients. As the face
inversion effect diminished through incremental training, this
result may reflect the improvement of holistic face processing
skills. However, determining if the experimental results can
be generalized to prosopagnosia patients will need further
investigation.

The next step is to determine if the training approach could
be effective in a larger population of developmental prosopag-
nosics. A full-scale study investigating the actual effect of
the training mode needs to be performed on prosopagnosia
patients. The face-naming ability of developmental prosopag-
nosics needs to be assessed before and after training using the
system.



B. Electroencephalography (EEG) Signals as Feedback

Brain activities in the face-selective region associated with
face recognition can be measured from event-related brain
potentials [34], [35]. We plan to incorporate EEG measure
as a form of feedback in the training mode for the users to
more precisely measure their improvement on face memory
and recognition abilities.

C. Face Flashback Training

One of the current rehabilitation studies involves fast face-
name flashback with rotated faces [11]. Our next step is to add
this feature into the training mode. we will repeatedly present
the new contact’s picture in an exponentially increasing time
(i.e. 1min, 2min, 4min, 8min). This periodical flashback
aims to improve the user’s ability to remember new contacts.
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